A Novel Non-negative Shrinkage Technique Based on The Normal Inverse Gaussian Density Model
نویسندگان
چکیده
This paper proposes a novel image denoising technique based on the normal inverse Gaussian (NIG) density model using an extended non-negative sparse coding (NNSC) algorithm. Here, we demonstrate that the NIG density provides a very good fitness to the non-negative sparse data. In denoising process, by exploiting a NIG-based maximum a posteriori estimator (MAP) of an image corrupted by additive Gaussian noise, the noise can be reduced successfully. This shrinkage technique, also referred to as NNSC shrinkage technique, is self-adaptive to the statistical properties of image data. The experimental results show that the NNSC shrinkage approach is indeed efficient and effective in image denoising. In addition, we also compare the effectiveness of the NNSC shrinkage method with methods of standard sparse coding shrinkage, wavelet-based shrinkage and the Wiener filter. The simulating results show that the NNSC shrinkage method indeed outperforms the three kinds of denoising approaches mentioned above.
منابع مشابه
Sparse Code Shrinkage Based on the Normal Inverse Gaussian Density Model
In this paper we introduce the recent normal inverse Gaussian (NIG) probability density as a new model for sparsely coded data. The NIG density is a flexible, four-parameter density, which is highly suitable for modeling unimodal super-Gaussian data. We demonstrate that the NIG density provides a very good fit to the sparsely coded data, obtained here via an independent component analysis (ICA)...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملNegative Selection Based Data Classification with Flexible Boundaries
One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملA Novel NeighShrink Correction Algorithm in Image Denoising
Image denoising as a pre-processing stage is a used to preserve details, edges and global contrast without blurring the corrupted image. Among state-of-the-art algorithms, block shrinkage denoising is an effective and compatible method to suppress additive white Gaussian noise (AWGN). Traditional NeighShrink algorithm can remove the Gaussian noise significantly, but loses the edge information i...
متن کامل